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Abstract

Preclinical surgical studies in rodent models play a pivotal role in elucidating the mechanisms of bone repair and regeneration. Similar
to clinical practice, intraoperative and postoperative complications in preclinical studies significantly affect treatment outcomes and may
even alter the overall experimental results. Well-established laboratory infrastructure and experimental procedures can reduce the risk
of adverse events, such as intraoperative technical errors and postoperative infection. However, these aspects are often underreported or
overlooked in the literature. In this study, fracture fixation in rats is presented as an example to highlight the essential but often unre-
ported details, such as virtual surgical planning, preoperative rehearsal, disinfection protocols, intraoperative management, postoperative
support, multidisciplinary collaboration, and research documentation. Supplementary and alternative solutions are also proposed for
laboratories with limited resources. By applying virtual planning and rehearsal with three-dimensional (3D)-printed samples, the au-
thors have performed 108 consecutive external fixation procedures for rat femoral fractures since 2020, with no intraoperative dropouts
attributable to surgical technique errors. The operative time stabilized at 45.6 4= 3.8 minutes (mean =+ standard deviation), reflecting
low variability and a reproducible workflow. Systematic implementation of these strategies helps prevent postoperative complications,
enhances animal welfare, and improves the reproducibility and translational potential of preclinical research.

Keywords: Orthopaedic procedures, animal model, three-dimensional printing, infection control, electronic lab notebook, environmental
enrichment.
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Introduction comes can be assessed in real time. However, such quality
control and evaluations are difficult to achieve or even un-
feasible in animal studies. Consequently, minor oversights

regarding risk factors residing in laboratory infrastructure,

Rodents, particularly rats and mice, share numerous
physiological and pathological features of the human mus-

culoskeletal system, making them ideal models for inves-
tigating pathological processes and novel therapeutic in-
terventions [1-5]. In the clinical setting, rigorous quality
control is routinely implemented, and patient-reported out-
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surgical procedures, and postoperative management may
profoundly influence treatment outcomes, compromising
the validity and translational potential. Therefore, meticu-
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lous attention to detail throughout the entire study is essen-
tial to enhance the clinical relevance of preclinical surgical
research.

Historically, the realistic simulation of clinical or-
thopaedic treatment in small animals was difficult, as only a
few specialized surgical instruments were available. Over
the past decade, the introduction of standardized fracture
fixation devices for rodents has enabled the operative tech-
niques to closely replicate the treatment scenarios in hu-
mans [6-9]. Moreover, the application of multimodal in
vivo dynamic imaging has further facilitated the simulation
of postoperative clinical follow-up [10].

Beyond standardized surgical implants, research
workflows also have a significant impact on the repro-
ducibility and translational value of preclinical studies. For
example, the Planning Research and Experimental Proce-
dures on Animals: Recommendations for Excellence (PRE-
PARE) and Animal Research: Reporting of In Vivo Ex-
periments (ARRIVE) Guidelines for reporting animal stud-
ies emphasize that transparency in laboratory methodolo-
gies and perioperative procedures is pivotal for ensuring
reproducibility [11-13]. These guidelines provide a criti-
cal framework for in vivo research, encompassing rigorous
study design, detailed animal-related information, and com-
prehensive procedural reporting (such as anesthesia, anal-
gesia, and humane endpoints).

However, scientific publications seldom provide a
comprehensive account of complex experimental work-
flows. Certain micro-environmental and operational details
can directly affect surgical success and complication rates,
but are not fully addressed by the existing guidelines. In
this study, the authors use the term microenvironment to
denote underreported operating room factors that influence
sterile-field integrity and the precision of surgical proce-
dures, such as air quality, personnel traffic, attire, lighting,
and temperature control. Other operational details include
surgical planning, disinfection protocols, and postoperative
management strategies [14].

Researchers and peer reviewers often prioritize the
novelty of interventions and the significance of primary
outcomes. Due to space limitations (e.g., word count) in
many journals, preclinical studies involving complex sur-
gical models tend to underreport procedural details. More-
over, under the intense pressure of publishing, researchers
without prior clinical surgical experience may lack suffi-
cient time or motivation to address overlooked aspects. For
example, operative field management and sterile techniques
are essential components of good surgical practice, but are
nonetheless commonly underreported [15,16].

Furthermore, many standardized practices routinely
implemented in clinical surgeries are difficult to replicate
with high fidelity in preclinical settings [15,17]. These in-
clude specialized operating rooms, instrument sterilization
between surgeries, personnel control in the surgical area,
and intraoperative lighting (Table 1). Even in high-standard
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clinical institutions, preventing serious complications such
as prosthetic infections remains a daunting challenge to date
[18,19]. Consequently, deficiencies in preclinical labora-
tory infrastructure and workflow can substantially increase
the risk of surgical failure and other adverse events, partic-
ularly in resource-limited research environments.

This manuscript examines critical but often underre-
ported aspects of laboratory infrastructure and procedural
workflow, using the rat femoral fracture model as a repre-
sentative example. In addition, the authors provide recom-
mendations and alternative solutions, particularly for labo-
ratories operating with limited resources. By highlighting
critical yet often-overlooked details, the article aims to re-
duce complications, enhance animal welfare, improve re-
producibility, and strengthen the translational potential of
preclinical orthopaedic research.

Optimization of Surgical Design through
Digital Simulation and Three-Dimensional
(3D) Printing

Virtual Planning Based on 3D Reconstruction and
Simulation

Fracture reduction, precise osteotomy, and implant
placement in small animals may present considerable tech-
nical challenges because of the limited operative field [14].
Minor intraoperative errors or unforeseen technical difficul-
ties may prolong surgical time, increase tissue trauma, and
lead to unnecessary animal suffering or death, thereby com-
promising the reliability of experimental outcomes. There-
fore, moving beyond experience-based approaches to adopt
preoperative surgical planning is essential to improving
success rates, reducing animal use, and ensuring welfare.

In recent years, the adoption of preclinical imaging,
computer-aided design (CAD), and 3D printing technolo-
gies has enabled researchers to design, simulate, and op-
timize surgical procedures prior to animal surgeries [20—
22]. For example, the use of virtual design and 3D-printed
reduction devices has been shown to reduce the operative
time by up to 34 minutes in the osteosynthesis of canine
tibial fractures [23].

The first step in refining surgical design involves ac-
quiring and reconstructing 3D digital models of the tar-
get anatomical sites. In the author’s laboratory, micro-
computed tomography (micro-CT) is routinely employed
to scan target bones (e.g., rat femur) at micrometer reso-
lution (voxel size: 20-40 pum). The acquired data, typi-
cally in Digital Imaging and Communications in Medicine
(DICOM) format, are imported into image-processing
and CAD software such as 3D Slicer (version 4.10.2,
Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA, USA; www.slicer.org) and Meshmixer (ver-
sion 3.5.474, Autodesk Inc, San Rafael, CA, USA; www.
meshmixer.com) for skeletal reconstruction [24].

Within the virtual environment, anatomical parame-
ters can be precisely measured to guide implant selection
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Table 1. Comparison between clinical and preclinical orthopaedic surgeries, and potential impact of preclinical settings on the

treatment outcomes.

Clinical orthopaedic surgery
Category (human)

Preclinical surgical research

(small animals)

Potential impact on surgical outcomes

Surgical planning Supported by expert teams, device
manufacturers, professional software,
and 3D-printed models

Operational complexity Surgeries performed under direct vi-
sion, or with endoscopic magnifica-
tion

Surgical infrastructure Fully equipped, dedicated operating
rooms

Environment control Strict zoning and traffic control

Instrument sterilization Dedicated, sterilized instrument sets

Consumables and draping Standard use of sterile (disposable)

materials
Intraoperative support Advanced systems for temperature
control and lighting

Team composition Trained surgeons and nurses

Postoperative management  Professional care and supervised re-

habilitation

Relies heavily on prior experience or

information from published studies

Limited visibility and operating field,

requiring fine operative techniques

May lack dedicated surgical facilities

Protocols are often inconsistent

across laboratories

Repeated use of instruments and lim-

ited sterilization capacity

Materials and techniques vary across

studies

Advanced systems are often unavail-
able

Greater involvement of researchers,

students, and technicians

Managed by research staff, it may
lack adequate clinical or veterinary

oversight.

Greater variability and higher failure

risk

Increased risk of technical errors

Higher risk of infection

Poor sterility control and increased

risk of infection

Higher risk of cross-contamination

Barrier integrity compromised

Increased surgery- and anesthesia-

related risks

Variable skill levels and increased

complication risk

Delayed detection and response to

complications

and design [22]. The feasibility of the operative approach
is also assessed through virtual simulations, enabling itera-
tive optimization in a noninvasive and cost-effective man-
ner, thus reducing the risk of intraoperative trial and error
(Fig. 1A).

Preoperative Rehearsal Using 3D-Printed Models

Using digital models derived from imaging data, the
authors employed 3D printing methods such as fused de-
position modeling and selective laser sintering to prepare
1:1 scale bone models. These tangible and accurate models
serve as intuitive training tools for rehearsal, allowing re-
searchers to use surgical instruments to practice the proce-
dure [25,26]. Hands-on practice often reveals technical lim-
itations not apparent during virtual planning, such as oper-
ability of standardized bone defects and osteotomy, as well
as the feasibility of fixation devices. Based on these in-
sights, final adjustments to the surgical plan, implant, and
instrument selection can be made prior to the actual in vivo
experiment (Fig. 1B). Each operator can also fine-tune the
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process during rehearsal according to their own operating

preferences.

Although the above process inevitably increases the

workload for the research team during the planning phase,
the upfront investment in design and validation helps miti-
gate the risk of later-stage failure due to procedural flaws,
thereby laying a more robust foundation for future clinical
translation. The authors have implemented virtual surgical
planning and rehearsal using 3D models since 2020. In the
subsequent 108 external fixation procedures for rat femoral
fractures, no intraoperative dropouts attributable to surgical
technique errors were recorded. Dropouts were defined as
termination of the procedure and euthanasia due to failure in
fracture induction, reduction, or stable fixation, which are
essential to ensure postoperative weight-bearing with the
operated limb. The mean operative time averaged at 45.6
minutes (45.6 + 3.8, mean =+ standard deviation), reflect-
ing low variability and a reproducible workflow, thus sup-
porting further postoperative multimodal imaging within a
90-minute general anesthesia window [10].
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Table 2. Safety guidelines for environmental enrichment (EE) after rodent fracture fixation.

Category

Key items/actions

Conditions & monitoring

1. Baseline safety

2. Application with caution

(for general fracture surgeries)

3. Application with caution

(for external fixation)

4. Dynamic staging

5. Monitoring

6. Withdrawal

* Tear-resistant, low-dust nesting
* Semi-enclosed shelters

* Social housing

* Climbing structures
* Narrow tunnels

* Wheels or elevated platforms

* Hanging toys or high platforms
* Wire-mesh tubes
* Hard-edged items or items causing

collision/entrapment

* POD 0-3: baseline warming & protection only
* POD 3-14: gradual addition of low-risk items
* >POD 14: escalation per imaging, gait, and

veterinary approval

» Weight-bearing activity; Gait analysis

+ Inflammation/stress parameters: 1L-6,
TNF-, CRP, corticosterone

* Wound and pin-tracts: redness, exudate

* Imaging: X-ray or micro-CT if planned

* Remove EE items if gait, activity, wound,
or fixation stability deteriorates

* Document all changes

Always allowed to provide baseline warmth,

comfort, and natural behavior without device risk.

Introduce only with stable weight-bearing and
wound status, and keep monitoring for 24-48 h

after introduction.
Contraindicated during fixator presence to prevent

injury or instability.

Stage EE introduction according to healing status

and postoperative monitoring.

Use quantitative criteria to assess EE safety and

impact on recovery.

Log adjustments, metrics, and outcomes; Consult

with a veterinarian doctor if necessary.

POD, postoperative day; IL, interleukin; TNF, tumor necrosis factor; CRP, C-reactive protein.

Table 3. Information categories recommended for electronic lab notebooks (ELNs) and the value for research.

Information category

Recommended ELN content

Value for surgical/digital research

Preoperative planning

Surgical environment

Surgical instrumentation/consumables

Intraoperative support

Postoperative monitoring

Protocol deviations/incidents

Surgical design/procedure; 3D (CAD) model data.

Standardization and reproducibility.

Working zones layout; Personnel traffic regulations;

Surgical attire requirements.

Type of instrument/consumables; Cleaning and

sterilization protocols.

Core electric equipment; Disinfectants;

Disinfection/sterilization protocols.

Environmental enrichment and monitoring protocols.

Description of unexpected events/corrective measures.

Environmental sterility control.

Surgical quality assurance.

Reducing complications for data reliability.

Animal welfare improvement and injury prevention.

Transparency and enhanced data interpretation.

A more detailed template is provided in the Supplementary Material.

Novel Techniques for Optimization in Rodent Bone

Research

Beyond preoperative design and rehearsal, there are
novel techniques that can extend the workflow optimiza-
tion to intraoperative and postoperative phases. For exam-
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ple, fixation devices can be coupled with implantable strain

sensors, providing real-time biomechanical data at the frac-

50

ture site [27,28]. Such a sensor-based solution could en-
able intraoperative evaluation of reduction quality, as well
as early detection of implant construct failure after surgery.
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Fig. 1. Digital planning and 3D-printed rehearsal optimize surgical design and reduce technical variability. (A) Virtual surgi-
cal planning based on micro-CT reconstruction allows pre-measurement of anatomical parameters and pre-specification of acceptable
alignment before live surgery. This reduces trial-and-error, shortens operative time, and improves first-pass success. (B) Preoperative
rehearsal on 3D-printed models (1:1 scale) with actual instruments exposes constraints not apparent in silico, enabling final adjustment
of approach and implant design prior to animal use. (A, left) 3D models of external fixation and intramedullary fixation for rat femur,
segmented with 3D Slicer (version 4.10.2) and rendered in Meshmixer (version 3.5.474); (B, left) External fixation with standardized sur-
gical device (RatExFix, RISystem AG, Switzerland) and intramedullary fixation with partially threaded Kirschner wire; Figure designed

by authors (Y.S. and K.W.).
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Precise measurement of
anatomical structures, for
surgical planning

Virtual osteotomy: detailed
planning for fracture sites,
bone defect size, etc.

Optimal implant selection
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with tactile feedback

Support training of
operative techniques

Physical validation of
surgical steps

Refinement for reducing
complication rates
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and protocol confirmation
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(1) Restricted Access

(2) Thorough Preoperative Preparation

[ <~

LR

Fig. 2. Operating room discipline and traffic control mitigate airborne contamination and procedural error. Key operational

rules for small-animal surgery rooms: (1) Restricted access for trained and role-assigned personnel only; (2) Thorough preoperative

preparation, to verify sterile sets before incision; (3) Clear definition of intraoperative roles, including instrument handling, disinfection

and imaging; (4) Controlling personnel movement and limiting door openings reduce turbulent airflow and airborne bioburden, protect
sterile barriers, and decrease distractions that can trigger technical mistakes. Figure designed by authors (Y.S. and K.W.) and processed

with Microsoft PowerPoint.

In parallel, microsensors embedded in implants may pro-
vide chemical monitoring, such as the application of pH
sensors to detect acidic tissue environments during early
postoperative infection [29]. Although the introduction of
novel approaches poses substantial technical challenges in
rodent surgeries, virtual design combined with 3D printing
facilitates their application, thus supporting the optimiza-
tion of the entire research flow.

Management of the Surgical Environment
Laboratory Management and Control of Personnel Traffic

Proper management of the operating environment is a
critical factor in ensuring the reliability of preclinical ex-
periments. Laboratory spaces should be clearly divided
into distinct areas, including a preparation area, a surgical
area, and a recovery area [14]. The surgical area must be
maintained under strict hygienic conditions to minimize the
risk of infection, and all personnel involved must adhere to
stringent dress codes, such as wearing caps, masks, sterile

o
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gloves, and surgical gowns. Before surgery, it is critical to
ensure that all necessary instruments, equipment, and other
supplies are fully prepared and positioned in the surgical
area. Only essential personnel with clearly defined respon-
sibilities should be permitted to enter during the procedure

(Fig. 2).

The importance of air quality in the surgical environ-
ment may have been underestimated in preclinical research.
Frequent door openings and unnecessary movement within
the room create turbulent airflow, which resuspends settled
particles from floors, equipment, or clothing back into the
air [30-32]. These factors are associated with increased
airborne bacteria and particulate matter [32,33]. Person-
nel may also act as vectors of microbial contamination, and
studies have shown a direct correlation between the level
of physical activity and increased airborne microbial load
[33-35].

Airborne particles can settle in surgical wounds, on in-
struments, or within the surgical field, becoming potential
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Surgical
Attire
Clean scrubs or
garments, to prevent
cross-contamination
outside surgical area.

Aseptic Gowning

Donning a sterile gown |
with aseptic technigue.

Head
Covers
Disposable or reusable
head coverings are
mandatory, to enclose
all hair and scalp lakes.

Maintaining Sterile Zones

Keeping the sterile areas | v
intact during surgery.

Shoe
Covers
Shoe covers or dedicated
footwear, to minimize
floor-borne
contamination risks.

Surgical
Masks
Masks must cover nose
and mouth, to reduce
transmission of
respiratory droplets.

Timely Replacement

Replacing in case of
contamination / damage.

Fig. 3. Requirements for personnel attire in the surgical area, and proper use of sterile surgical gowns. (A) Protective attire on

entry to the surgical area: clean scrubs, a cap fully enclosing hair, mask covering nose and mouth, and dedicated clean footwear/shoe
covers, which are measures that lower baseline particulate and microbial shedding. (B) Sterile practice essentials: don a fluid-resistant,
low-lint sterile gown after hand preparation; maintain sterile zones; replace attire immediately if contaminated or soaked, or after contact
with non-sterile surfaces. These barrier integrity checkpoints directly impact surgical field sterility and downstream infection risk in

orthopaedic procedures. Figure designed by authors (Y.S. and K.W.) and processed with Microsoft PowerPoint.

sources of infection. Although direct data on laboratory sur-
gical environments are limited, research performed in clin-
ical operating rooms has clearly demonstrated the impor-
tance of limiting personnel movement [31,32,36]. Exces-
sive personnel traffic should therefore be recognized as an
independent risk factor for surgical site infection (SSI), and
the findings from clinical settings should be equally valu-
able in regulating preclinical surgeries.

Furthermore, excessive personnel and activity intro-
duce additional risks beyond air quality issues, including
(1) the risk of accidental contact, as higher numbers of peo-
ple and uncoordinated movements raise the likelihood of
contaminating sterile drapes, instruments, or the operative
field; and (2) distraction of the surgical team, as movement
and conversation can disrupt concentration, increasing the
risk of procedural errors. Therefore, it is essential to limit
the number of personnel and level of activity in the sur-
gical room to the minimum necessary level (Fig. 2). In
resource-constrained laboratory settings, mobile air purifi-
cation devices may be used during surgical preparation as
supplementary measures to improve air quality.

Appropriate Attire in the Surgical Area

Surgical attire comprises two key components: (1)
dedicated surgical scrubs that should be worn upon entering
operating areas; and (2) sterile gowns that must be donned
after hand disinfection when performing sterile procedures
(Fig. 3). These requirements are designed to create micro-
bial barriers and define a relatively clean working environ-
ment, reducing the introduction of contaminants and min-
imizing pathogen transmission. Moreover, since exposure
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to blood or body fluids can compromise the barrier function
and facilitate bacterial migration, the materials used for sur-
gical gowns must possess adequate fluid resistance [36—38].
Once fluid penetrates the inner layers, the area is considered
contaminated, and the gown should be replaced. Addition-
ally, gown materials should be low-linting to minimize the
generation and dispersion of airborne particles.

Sterile surgical gowns for animal surgeries may be ei-
ther disposable or reusable. Laboratories can choose be-
tween the two, based on factors such as the anticipated fluid
exposure, cost-effectiveness, and in-house sterilization ca-
pabilities. Polypropylene-based disposable gowns, which
provide reliable protection, have been used in the author’s
laboratory. Regardless of the type used, strict sterility must
be maintained during storage, transport, and use. Moreover,
laboratories should implement clear dress code protocols
and ensure that all staff are adequately trained in the proper
use of surgical attire and adherence to protocols.

Disinfection of Surgical and Peripheral Areas

While skin disinfection at the surgical site is critical
for preventing postoperative infection, it is equally impor-
tant to manage adjacent skin and hair-bearing areas. These
regions harbor microorganisms and debris that can be intro-
duced into the surgical field via direct contact, instrument
transfer, or air currents. Cleaning of peripheral areas, com-
bined with proper draping to establish complete sterile bar-
riers, is essential for reinforcing the aseptic field [39].

For rat femoral surgeries, in which the surgical site is
close to paws and tail, the authors perform: (1) preoper-
ative washing of adjacent non-surgical regions with warm
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Fig. 4. Thermoregulation, lighting, hair removal, draping, disinfection, and sterilization: practical levers for reducing anesthesia

time, improving precision, and lowering infection risk. (A) Heating pad and thermometer for maintaining normothermia (36-38 °C),
with a protective drape layer to prevent thermal injury, to reduce anesthetic complications and speed recovery. (B) Shadow-free surgical
lighting (gooseneck and supplementary LED lamp) with sterile covers to provide tissue contrast and shadow reduction, thereby lowering
intraoperative risk. (C) Electric clippers and disinfectant, to minimize microabrasions during hair removal, and to reduce SSI risk during
skin preparation. (D) Sterile drapes and adhesive film to isolate high-bioburden areas (paw, tail, perineum) from the field; once placed,
drapes are not moved from contaminated to clean zones. (E) Autoclave sterilization for instruments between animals, also allowing
high-temperature cycles (134 °C with 7-15 minutes exposure) to limit intraoperative prolongation of anesthesia. (F) Glass-bead sterilizer

for cleaning of small instruments (260 °C, 30—60 seconds), which is not a substitute for full sterilization (for contingency-only).

water (36-38 °C) after hair removal at surgical sites; and
(2) drying with sterile gauze and application of skin dis-
infectants (e.g., 10 % povidone-iodine, 2 % chlorhexidine
gluconate, 70 % ethanol or isopropanol), followed by cov-
ering with sterile materials. Both adhesive films and ster-
ile drapes can be used to prevent further contact with the
surgical field or instruments [40,41]. In cases where equip-
ment must be used near the surgical area, or adjusted in-
traoperatively but cannot be disinfected (e.g., electric drills
and surgical lighting), sterile transparent covers can serve
as protective barriers.

To further reinforce aseptic conditions of surgical sites
before incision, loose hair or skin debris should be checked
again and removed after the drying of the disinfectant. This
can be done by gently wiping with sterile gauze from the
center of the surgical site outward. For areas adjacent to the
surgical field, such as the margins of the hair-removal zone,
swabbing with sterile gauze soaked with the aforemen-
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tioned disinfectants can be performed, taking care not to
carry contaminants back into the disinfected zone [14,39].

When external fixation devices are applied for femoral
fractures, the entire connecting bar and portions of the
screws remain outside the skin after surgery, making the
postoperative cleaning and disinfection essential. On the
day of surgery and postoperative day 1, dried blood exu-
date on the implant surface can be cleaned with skin disin-
fectants, followed by secondary cleansing and drying with
sterile saline and gauze.

Preoperative Preparation Involving Electric

Equipment

Thermoregulation: Preventing Perioperative Hypothermia
Maintaining normothermia is critical for rodent surg-

eries because small animals are susceptible to rapid heat

loss due to their high surface area-to-volume ratio [14].

General anesthesia further exacerbates heat loss by sup-
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Fig. 5. Environmental enrichment (EE) after orthopaedic surgery: stage-wise implementation balancing welfare gains with

device safety. Concept and caution: EE (e.g., nesting, shelters, social interaction when appropriate) improves welfare (Pros), but must

be individually tailored and staged, especially for fracture fixation models to avoid adverse impacts on hardware (collision, entrapment)
or wound irritation (Cons). Operational guidance: (1) start with low-risk items (warm nesting, low-profile shelters) in the immediate

postoperative period; (2) avoid climbing structures or narrow passageways until radiological confirmation of cortical bridging; (3) monitor

for weight-bearing activity, wound condition, and fixator stability; and (4) remove or modify any item causing adverse signs or hindering

observation.

pressing thermoregulatory mechanisms and inducing pe-
ripheral vasodilation [42—45]. In addition, surgical expo-
sure and the evaporation of irrigation fluids contribute to
hypothermia (core body temperature <36 °C).

Intraoperative hypothermia can result in a wide range
of adverse effects, including delayed drug metabolism
(leading to prolonged anesthesia recovery), cardiovascu-
lar disturbances (e.g., arrhythmias), coagulopathy (increas-
ing bleeding risk), immunosuppression (raising infection
risk), delayed wound healing, and overall prolonged recov-
ery time [42,44-47]. Therefore, preventing hypothermia is
a critical component in perioperative management.

Many research facilities may lack specialized devices
for monitoring core body temperature (intra-abdominal or
rectal) during surgery. The authors recommend the follow-
ing supplementary and alternative approaches to mitigate
the risk of hypothermia: (1) minimizing heat loss by short-
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ening anesthesia and surgical durations to reduce incision
exposure, and by using pre-warmed fluids for irrigation;
(2) protecting animals during transport by wrapping them
in aluminum foil or warming blankets to conserve heat;
and (3) applying external heat sources, such as thermostat-
ically controlled heating pads or circulating-water blankets
[14,45,48].

It is important to maintain heating devices within a
safe temperature range (e.g., 3638 °C), and to place a pro-
tective layer between the animal and the device to prevent
thermal injury (Fig. 4A). When using heating lamps, a safe
distance must be maintained to avoid burns or excessive
drying [43]. Temperature-monitoring devices should be im-
plemented to detect potential overheating or equipment fail-
ure.

Com
CELLO® maczziaLy


https://www.ecmjournal.org/
https://www.ecmjournal.org/
https://doi.org/10.22203/eCM.v055a04

European Cells and Materials Vol.55 2026 (pages 47-62) DOI: 10.22203/eCM.v055a04

Regular Meetings

Routine meetings foster collective o o

problem-solving & progress sharing -:

OE
M\

Shared Resources & Platforms

e
I

Intra-Institutional Collaboration

R Institutional collaboration ensures
22 quality support and project development

Inter-Institutional Collaboration

Shared platforms enhance data | — Enhanced =|— Partnerships with other institutions
access and collaborative research @ Collaboration drive multi-center studies
for Clinical
Translation

Joint Training & Development

Integrated training programs cultivate lé
adaptable expert researchers

Academia-Industry Collaboration

£
:@: Collaboration with industry advances
clinical technology and innovation

Fig. 6. Multidisciplinary collaboration links planning, execution, and evaluation to raise reproducibility and translational value.
The diagram illustrates practical strategies that strengthen collaboration throughout the research lifecycle, from project design to execution
and translational impact. Practical pathways to team-science in preclinical orthopaedics involve integrating bone surgery, veterinary care,
imaging, biomechanics, biomaterials, and data documentation support. Examples include joint protocol design, shared access to imaging
core facilities, and scheduled cross-disciplinary reviews of implant selection and welfare metrics.

Surgical Lighting: Ensuring Adequate Visualization

High-quality surgical lighting is essential for clear vi-
sualization of anatomical details during surgery, such as
blood vessels or peripheral nerves, thereby facilitating ac-
curate dissection, hemostasis, and suturing [49—51]. This is
especially important when operating on delicate and small-
scale rodent anatomy. Furthermore, reducing shadows
within the surgical field enhances visual comfort, decreases
fatigue for surgeons, and may shorten surgical time, thereby
reducing anesthetic risks [52].

Mobile surgical lamps or adjustable desktop goose-
neck lamps can serve as the primary light source (Fig. 4B).
Surgical headlamps are also recommended to offer coaxial
illumination and remain effective during head movement.
In laboratories with limited resources, alternative lighting,
such as non-surgical headlamps, can also improve surgi-
cal field visibility [53]. However, these devices must pro-
vide sufficient and adjustable brightness, a color tempera-
ture close to natural daylight (to aid tissue color differenti-
ation), and minimal shadow interference.

Hair Removal

Once a surgical incision is made, animal hair can eas-
ily become a source of SSI. Therefore, preoperative hair
removal is a critical step in infection prevention during or-
thopaedic procedures [54]. The removal area must exceed
the anticipated incision length to establish a broad and hair-
free zone (e.g., 2.5 cm beyond the incision margin in rats).
This precaution prevents adjacent hair from entering or con-
taminating the sterile field during intraoperative skin trac-
tion or movement. For limb surgeries (e.g., femoral, knee,
or tibial procedures), circumferential removal may be re-
quired.

Cpm
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The authors routinely use electric clippers with fine-
toothed blades (Fig. 4C). Compared to razor blades, elec-
tric clippers effectively remove hair while minimizing mi-
croabrasions to the skin, which can serve as foci for bac-
terial colonization [54,55]. If chemical removal is needed,
it can be applied after initial clipping, followed by gentle
scraping with a smooth and blunt metallic instrument.

To minimize the risk of bacterial recolonization on ex-
posed skin, hair removal should be performed as close to
the time of surgery as possible [55]. Hair removal should
be performed in the preparation area, rather than the oper-
ating area, to limit contamination from airborne hair parti-
cles. After clipping, all loose hair must be thoroughly re-
moved using a vacuum, lint roller, or damp sterile gauze.
The skin can then be cleaned using the aforementioned dis-
infectants, followed by drying for a minimum of 2 minutes.
Non-operative regions can be covered with sterile drapes or
materials to establish a sterile surgical field (Fig. 4D).

The goal of draping is to physically isolate potential
contamination sources from the disinfected surgical field
through the use of sterile towels or wraps [39]. Body areas
with high microbial burdens (e.g., mouth, nose, perineal re-
gion, paws, and tail) should be effectively excluded from
the sterile field. Laboratories may select the type of drapes
based on their specific needs and capabilities. Regardless
of material, draping must be performed using strict asep-
tic techniques. Once placed, sterile drapes must never be
moved from contaminated areas toward the center of the
sterile field. All surgical team members should receive
training in draping techniques to ensure effective coverage
and isolation.

In femoral fracture surgeries, the fixation device may
inadvertently trap residual hair or debris, which can become
sources of postoperative infection. Therefore, a meticulous
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inspection of the entire operative field and all anatomical
layers should be performed before wound closure. The au-
thors routinely employ a minimum of 40 mL of sterile saline
for thorough irrigation during inspection to reduce the in-
fection risk.

Instrument Sterilization and Glove
Management

Sterilization of Surgical Instruments

Routine orthopaedic procedures in small animals of-
ten involve surgical exposure of bone and implantation of
hardware or foreign materials (e.g., screws and bone grafts),
which substantially increase the risk of SSI. Therefore, all
instruments and materials in contact with the surgical field
or introduced into body cavities must meet stringent steril-
ization standards before use.

When performing surgeries on multiple animals in a
single day, the optimal approach is to prepare a separate and
fully sterilized instrument pack for each animal to minimize
the risk of cross-contamination [39]. If resource limitation
necessitates the reuse of certain instruments, thorough de-
contamination should be performed, followed by autoclave
sterilization between surgeries. It is critical to recognize
that any instrument reused without completing a full ster-
ilization cycle presents a risk of infection for subsequent
animals.

In rodent fracture surgery, fixation devices (e.g., ti-
tanium screws) are often supplied in single sterile pack-
ages containing quantities sufficient for multiple proce-
dures [10]. When several operations are scheduled on the
same day, opening such a package may result in unused im-
plants being unnecessarily exposed to the operating room
environment, thereby increasing the risk of contamination.
To minimize this risk, the authors routinely reallocate the
number of implant components in each sterilized set, ac-
cording to the specific requirements of the planned proce-
dure. For instance, when stabilizing femoral fractures with
external fixation, only one connecting bar and four screws
are prepared per surgery [10].

In cases of intraoperative contamination, contami-
nated instruments must be replaced with sterile backups
or undergo rapid sterilization to mitigate the risk of cross-
infection. Before sterilization, all visible organic material
must be removed, followed by rinsing with sterile fluids.
Traditional autoclaving at 121 °C may require 30 minutes
for steam exposure, which can significantly extend the sur-
gical and anesthesia duration if performed intraoperatively.
When equipment permits, the authors recommend using
high-temperature cycles (132—-135 °C) to reduce steriliza-
tion time to 7—15 minutes (Fig. 4E) [56,57].

In resource-constrained preclinical environments,
glass bead sterilizers may serve as a temporary alternative
for small surgical instruments, provided that instruments
are thoroughly cleaned and disinfected beforehand (Fig.
4F) [39,58]. The authors operate such devices at 260 °C
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for approximately 30-60 seconds. However, the method is
not a replacement for proper sterilization and should only
be used for intraoperative contingencies.

Intraoperative Glove Management

Surgical gloves serve as the primary barrier between
the operator’s hands and the sterile operative field. How-
ever, they are not impermeable. Minor perforations may
occur during bone reduction, implant handling, or wound
closure, often going unnoticed. The risk of perforation in-
creases with longer surgical durations. Laine and Aarnio
[59] demonstrated that single gloving results in a 13-fold
higher risk of contamination compared with double glov-
ing. To minimize contamination, double gloving should be
a standard practice for all orthopaedic procedures.

Even in the absence of obvious perforation, gloves
should be intermittently disinfected with appropriate dis-
infectants during surgery and replaced at strategic inter-
vals, based on procedural duration and contamination risk
[60,61]. For early detection of perforations, Meakin et al.
[62] reported a significantly higher sensitivity with colored
indicator gloves compared to standard gloves (83 % vs. 34
%, p < 0.001), indicating the benefits of using the novel
gloves during surgery.

Gloves must be changed immediately under the fol-
lowing circumstances: (1) after contact with non-sterile sur-
faces (e.g., adjusting surgical lamp without sterile cover,
touching non-sterile equipment, or contacting areas beyond
the sterile field); (2) when perforation or puncture is de-
tected; (3) before critical steps, such as implant placement;
and (4) routinely, for example, when the procedure exceeds
90 minutes [59-61,63-65]. Although disinfectants may
temporarily reduce surface contamination, they should be
regarded as interim measures only. Changing gloves re-
mains the most reliable and appropriate practice for main-
taining sterility.

Postoperative Environmental Enrichment:
Balancing Welfare Needs and Safety Risks

Environmental enrichment (EE) refers to providing
conditions that promote the expression of natural behav-
iors and enhance physical activity in laboratory animals
[66-69]. EE plays a vital role in mitigating abnormal be-
haviors and stress, and is a key component of the “Re-
finement” principle within the 3Rs (Replacement, Reduc-
tion, and Refinement) framework [70,71]. In the context
of orthopaedic recovery, animals may experience pain, dis-
comfort, restricted mobility, and, in some cases, temporary
individual housing. Under these circumstances, appropri-
ate and safe enrichment strategies, such as the provision of
nesting materials, shelters, and social interaction, may offer
multiple benefits (Fig. 5).

Importantly, EE protocols should be tailored to the
surgical model and dynamically adjusted according to the
stage of recovery [72,73]. Certain enrichment interventions
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may increase the risk of postoperative complications, espe-
cially with fracture fixation devices [6,10,74,75]. For ex-
ample, narrow passageways or climbing structures may re-
sult in impact on fixation devices during movement, lead-
ing to hardware loosening or displacement. Therefore, al-
though EE offers clear rehabilitative advantages, its imple-
mentation should follow a cautious and stepwise approach
with safety as the highest priority (Fig. 5). More detailed
safety guidelines for EE after rodent fracture fixation are
provided in Table 2.

Following the introduction of any EE intervention, an-
imals must be monitored with increased frequency and at-
tention. In case of adverse signs attributable to EE (e.g.,
loosening of fixators, entrapment, or wound irritation), the
respective enrichment item should be removed or modi-
fied, and veterinary consultation should be initiated if nec-
essary [76—78]. Key monitoring points for the application
of EE include: (1) safe interactions between laboratory ani-
mals and enrichment objects; (2) stability of internal or ex-
ternal fixation devices; (3) abnormal signs during weight-
bearing activities, such as worsening lameness and progres-
sive swelling of the surgical limb; (4) wound complications
including redness, discharge, or dehiscence; and (5) gen-
eral behavior, activity level, food intake, and body weight
changes. Similar to preoperative planning, the optimiza-
tion of EE involves expertise beyond routine bone research
and can benefit from a comprehensive team with multidis-
ciplinary expertise.

Multidisciplinary Collaboration

The preceding sections have outlined the critical roles
of infrastructure and experimental workflow in ensuring re-
search quality, animal welfare, and reproducibility in or-
thopaedic surgical studies. These aspects encompass digi-
tal planning, intraoperative asepsis, and postoperative man-
agement. While their implementation facilitates the simu-
lation of clinical scenarios and enhances translational po-
tential, it often exceeds traditional disciplinary boundaries
and the technical capabilities of a single laboratory team.

Preclinical orthopaedic studies frequently require the
integration of expertise from bone and joint surgery, veteri-
nary medicine, imaging, biomechanics, biomaterials, and
more related fields. Establishing multidisciplinary collabo-
ration is therefore essential for overcoming the limitations
of individual teams by enabling experts from diverse fields
to contribute their unique perspectives [79]. This ensures
that each phase of the research, from planning to execution
and evaluation, is carried out with specialized expertise.
However, successful collaboration does not occur sponta-
neously and instead requires cultivation and active manage-
ment.

In preclinical studies, certain advanced laboratory re-
sources and infrastructure may demand significant financial
investment and specialized maintenance, such as dedicated
operating rooms, in vivo imaging platforms, biomechanical
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testing systems, and simulation-based computational tools.
Multidisciplinary collaboration facilitates shared access to
these core facilities and equipment, enhancing research ef-
ficiency while avoiding redundant expenditures (Fig. 6).

Enhancing Translation with Electronic Lab
Notebooks

Traditional paper notebooks have limitations in cap-
turing the complexity of methodological information, par-
ticularly often-overlooked laboratory and experimental de-
tails. Furthermore, paper records hinder efficient data man-
agement, searching, sharing, and long-term preservation.
For surgical studies involving numerous parameters and
multimedia evidence, these shortcomings can be addressed
using electronic lab notebooks (ELNs) to ensure research
quality and reproducibility [80,81].

ELNs provide a structured environment for document-
ing the multifaceted details discussed throughout this paper,
thereby improving research transparency and facilitating
clinical translation. For example, ELNs enable researchers
to embed diverse data types within a single record, includ-
ing 3D model data, tables, and checklists for surgical prepa-
ration, as well as a textual description of postoperative ob-
servations. Although implementation requires careful plat-
form selection, template design, and personnel training, it
enables consistent recording of critical parameters to mini-
mize omission.

The integration of ELNs supports broader digital re-
search initiatives, as structured records streamline the ex-
traction of information according to guidelines such as
PREPARE and ARRIVE, and hold potential for future com-
putational analyses and data mining efforts. Importantly,
standardized digital documentation also enables transparent
reporting, aligning with FAIR (Findable, Accessible, Inter-
operable, Reusable) data principles [82]. Moreover, digital
documentation can enhance every phase of the preclinical
workflow, and ELNs have been explicitly recommended as
a cornerstone of data management in preclinical animal re-
search [83].

Various ELNs are available, each with specific fea-
tures, such as openBIS ELN LIMS (ETH Zurich, Zurich,
Switzerland) and eLabFTW (Deltablot, Villejuif, France)
[84,85]. The authors have developed and applied the open-
source ELN Herbie, which can be tailored to any scientific
discipline and process by formal semantic descriptions in
ontologies [86]. This enables consistent annotation, im-
proved data interoperability, and enhanced reproducibil-
ity across experiments. The ontology underlying our ELN
implementation is currently under development and is in-
tended for public release in the near future to support trans-
parency and reuse. Table 3 summarizes the categories of
information mentioned in previous sections for ELN docu-
mentation. A more detailed template is provided in the Sup-
plementary Material, covering applications across preop-
erative, intraoperative, and postoperative phases.
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In animal studies involving musculoskeletal surgeries,
details of laboratory infrastructure and experimental work-
flow are frequently underreported or overlooked in publi-
cations. However, these confounding factors may critically
influence physiological responses and treatment outcomes.
Failure to report or control these variables can hinder repro-
ducibility, exacerbating the “reproducibility crisis” in pre-
clinical research [87-91]. Freedman et al. [92] estimated
an annual cost of irreproducibility in USA to be approxi-
mately 28 billion USD.

Such oversights in laboratory and experimental de-
tails may partly explain why many promising therapies in
animal models ultimately fail in clinical trials. For exam-
ple, tumor-growth patterns in mice can be significantly in-
fluenced by housing temperature, which undermines inter-
laboratory reproducibility if unreported [93]. In preclinical
bone studies, design flaws, substandard surgical environ-
ments, inadequate aseptic techniques, and insufficient post-
operative management may significantly increase the risk
of complications. These issues also contradict the “Refine-
ment” of the 3Rs.

Conclusions

This study focuses on frequently underreported yet
critical technical elements that impact research quality, re-
producibility, animal welfare, and translational potential in
orthopaedic research. Recognizing that not all laboratories
have access to ideal and clinically benchmarked facilities,
the authors recommend supplementary and alternative ap-
proaches based on surgical experience and relevant clinical
literature.

This work may serve as a practical reference for re-
searchers engaged in preclinical orthopaedic studies, en-
couraging greater attention to essential components during
experimental planning and more transparent reporting in
scientific publications. Through the utilization of comple-
mentary and alternative approaches, combined with a mul-
tidisciplinary workflow, the authors have effectively pre-
vented intraoperative technical failure and postoperative in-
fection in rat fracture fixation surgeries.

The authors’ recommendations are primarily derived
from surgical workflows for rat femoral fracture fixation,
which may not fully generalize to other species, skeletal
sites, or soft tissue procedures. Digital planning and ELN
adoption may face barriers (software access, availability of
input devices, training, and data governance constraints) in
resource-limited laboratories. Moreover, the reported met-
rics (e.g., intraoperative dropouts) reflect our team’s spe-
cific experience and infrastructure, and should be validated
across independent settings. Nevertheless, the underlying
principles, such as preoperative rehearsal, rigorous asep-
sis, quantified monitoring, and digital documentation, are
broadly applicable and amenable to context-specific adap-
tation.
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